Coherent Algebras and Noncommutative Projective Lines
نویسنده
چکیده
A well-known conjecture says that every one-relator group is coherent. We state and partly prove a similar statement for graded associative algebras. In particular, we show that every Gorenstein algebra A of global dimension 2 is graded coherent. This allows us to define a noncommutative analogue of the projective line P as a noncommutative scheme based on the coherent noncommutative spectrum qgrA of such an algebra A, that is, the category of coherent A-modules modulo the torsion ones. This category is always abelian Ext -finite hereditary with Serre duality, like the category of coherent sheaves on P. In this way, we obtain a sequence P n (n ≥ 2) of pairwise non-isomorphic noncommutative schemes which generalize the scheme P = P 2 .
منابع مشابه
Noncommutative Projective Curves and Quantum Loop Algebras
We show that the Hall algebra of the category of coherent sheaves on a weighted projective line over a finite field provides a realization of the (quantized) enveloping algebra of a certain nilpotent subalgebra of the affinization of the corresponding Kac-Moody algebra. In particular, this yields a geometric realization of the quantized enveloping algebra of elliptic (or 2-toroidal) algebras of...
متن کاملLinear Equations over Noncommutative Graded Rings
We call a graded connected algebra R effectively coherent, if for every linear equation over R with homogeneous coefficients of degrees at most d, the degrees of generators of its module of solutions are bounded by some function D(d). For commutative polynomial rings, this property has been established by Hermann in 1926. We establish the same property for several classes of noncommutative alge...
متن کاملNoncommutative Two-tori with Real Multiplication as Noncommutative Projective Varieties
We define analogues of homogeneous coordinate algebras for noncommutative two-tori with real multiplication. We prove that the categories of standard holomorphic vector bundles on such noncommutative tori can be described in terms of graded modules over appropriate homogeneous coordinate algebras. We give a criterion for such an algebra to be Koszul and prove that the Koszul dual algebra also c...
متن کاملDerived Categories of Quadric Fibrations and Intersections of Quadrics
We construct a semiorthogonal decomposition of the derived category of coherent sheaves on a quadric fibration consisting of several copies of the derived category of the base of the fibration and the derived category of coherent sheaves of modules over the sheaf of even parts of the Clifford algebras on the base corresponding to this quadric fibration generalizing the Kapranov’s description of...
متن کاملMsri Graduate Workshop: Lecture Notes for Course on Noncommutative Projective Geometry
These notes contain the material about noncommutative projective algebraic geometry that the author lectured on at the graduate workshop in June 2012 at MSRI. The notes generally contain everything covered in the lectures but may contain more than we are able to say in the lectures. Still, there are many facts we assume without proof in the lectures and for length reasons we generally do not pu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006